Part Number Hot Search : 
BR2020 74HC5 2SK557 P4SMA300 1N4756A MJE29 74HC5 1N4436FT
Product Description
Full Text Search
 

To Download MQFL-28-06S-Y-HB Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  mqfl-28-06s mqfl-28-06s single output single output pr oduct # mqfl-28-06s phone 1-888-567-9596 www .synqor .com doc.# 005-2mq060s rev. b 11/29/07 page 1 t t h h e e m m i i l l q q o o r r ? ? s s e e r r i i e e s s o o f f h h i i g g h h - - r r e e l l i i a a b b i i l l i i t t y y d d c c / / d d c c c c o o n n v v e e r r t t e e r r s s b b r r i i n n g g s s s s y y n n q q o o r r s s f f i i e e l l d d p p r r o o v v e e n n h h i i g g h h - - e e f f f f i i c c i i e e n n c c y y s s y y n n c c h h r r o o n n o o u u s s r r e e c c t t i i f f i i e e r r t t e e c c h h - - n n o o l l o o g g y y t t o o t t h h e e m m i i l l i i t t a a r r y y / / a a e e r r o o s s p p a a c c e e i i n n d d u u s s t t r r y y . . s s y y n n q q o o r r s s i i n n n n o o v v a a - - t t i i v v e e q q o o r r s s e e a a l l t t m m p p a a c c k k a a g g i i n n g g a a p p p p r r o o a a c c h h e e n n s s u u r r e e s s s s u u r r v v i i v v a a b b i i l l i i t t y y i i n n t t h h e e m m o o s s t t h h o o s s t t i i l l e e e e n n v v i i r r o o n n m m e e n n t t s s . . c c o o m m p p a a t t i i b b l l e e w w i i t t h h t t h h e e i i n n d d u u s s t t r r y y s s t t a a n n - - d d a a r r d d f f o o r r m m a a t t , , t t h h e e s s e e c c o o n n v v e e r r t t e e r r s s o o p p e e r r a a t t e e a a t t a a f f i i x x e e d d f f r r e e q q u u e e n n c c y y , , h h a a v v e e n n o o o o p p t t o o - - i i s s o o l l a a t t o o r r s s , , a a n n d d f f o o l l l l o o w w c c o o n n s s e e r r v v a a t t i i v v e e c c o o m m p p o o n n e e n n t t d d e e r r a a t t i i n n g g g g u u i i d d e e l l i i n n e e s s . . t t h h e e y y a a r r e e d d e e s s i i g g n n e e d d a a n n d d m m a a n n u u f f a a c c t t u u r r e e d d t t o o c c o o m m p p l l y y w w i i t t h h a a w w i i d d e e r r a a n n g g e e o o f f m m i i l l i i t t a a r r y y s s t t a a n n d d a a r r d d s s . . h h igh igh r r eliability eliability dc/dc c dc/dc c onverter onverter f f ull ull p p ower ower o o pera pera tion tion : -55oc : -55oc to to +125oc +125oc ? fixed switching frequency ? no opto-isolators ? parallel operation with current share ? remote sense ? clock synchronization ? primary and secondary referenced enable ? continuous short circuit and overload protection ? input under-voltage lockout/over-voltage shutdown features features mqfl series converters (with mqme filter) are designed to meet: ? mil-hdbk-704-8 (a through f) ? rtca/do-160e section 16 ? mil-std-1275b ? def-stan 61-5 (part 6)/5 ? mil-std-461 (c, d, e) ? rtca/do-160e section 22 specification compliance specification compliance mqfl series converters are: ? designed for reliability per navso-p3641-a guidelines ? designed with components derated per: mil-hdbk-1547a navso p-3641a design pr design pr ocess ocess 16-40v 16-40v 16-50v 16-50v 6.0v 6.0v 20a 20a 90% @ 10a / 89% @ 20a 90% @ 10a / 89% @ 20a continuous input continuous input t t ransient input ransient input output output output output efficiency efficiency mqfl series converters are qualified to: ? mil-std-810f consistent with rtca/d0-160e ? synqors first article qualification consistent with mil-std-883f ? synqors long-term storage survivability qualification ? synqors on-going life test qualification pr qualification pr ocess ocess ? as9100 and iso 9001:2000 certified facility ? full component traceability ? temperature cycling ? constant acceleration ? 24, 96, 160 hour bur n-in ? three level temperature screening in-line manufacturing pr in-line manufacturing pr ocess ocess d esigned & m anufactured in the usa f eaturing q or s eal ? h i -r el a ssembly
pr oduct # mqfl-28-06s phone 1-888-567-9596 www .synqor .com doc.# 005-2mq060s rev. b 11/29/07 page 2 output: output: current: current: 6.0 v 6.0 v 20 a 20 a mqfl-28-06s mqfl-28-06s t t t t e e e e c c c c h h h h n n n n i i i i c c c c a a a a l l l l s s s s p p p p e e e e c c c c i i i i f f f f i i i i c c c c a a a a t t t t i i i i o o o o n n n n typical connection diagram block diagram - - sense isolation stage regulation stage 7 8 uvlo ovsd secondary control gate drivers control power primary control positive input input return case enable 1 sync output sync input 12 11 10 9 1 2 3 4 5 6 positive output output return share enable 2 + sense gate drivers magnetic d ata coupling isolation barrier current limit current sense bias power transformer t1 t2 t1 t2 28vdc +vin load in rtn case ena 1 sync out mqfl sync in ena 2 share + sns C sns out rtn +vout 1 2 3 4 5 6 12 11 10 9 8 7 open means on open means on + C C +
pr oduct # mqfl-28-06s phone 1-888-567-9596 www .synqor .com doc.# 005-2mq060s rev. b 11/29/07 page 3 output: output: current: current: 6.0 v 6.0 v 20 a 20 a mqfl-28-06s mqfl-28-06s t t t t e e e e c c c c h h h h n n n n i i i i c c c c a a a a l l l l s s s s p p p p e e e e c c c c i i i i f f f f i i i i c c c c a a a a t t t t i i i i o o o o n n n n parameter min. nom. max. units notes & conditions group a vin=28v dc 5%, iout = 20a, c l = 0 f, free running 10 subgroup 13 unless otherwise specified absolute maximum ratings i nput voltage non-operating 60 v operating 1 60 v reverse bias (t case = 125oc) -0.8 v reverse bias (t case = -55oc) -1.2 v i solation voltage (input/output to case, input to output) continuous -500 500 v transient ( 100 s) -800 800 v operating case temperature 2 -55 135 c s torage case temperature -65 135 c l ead temperature (20 sec) 300 c voltage at ena1, ena2, sync in -1.2 50 v input characteristics o perating input voltage range (continuous) 16 28 40 v 1, 2, 3 operating input voltage range (transient, 1 sec) 16 28 50 v 4, 5, 6 i nput under-voltage lockout 3 t ur n-on v oltage threshold 14.75 1 5.50 16.00 v 1, 2, 3 turn-off voltage threshold 13.80 14.40 15.00 v 1, 2, 3 lockout voltage hysteresis 0.50 1.10 1.80 v 1, 2, 3 input over -v oltage shutdown 3 turn-off voltage threshold 54.0 56.8 60.0 v 1, 2, 3 turn-on voltage threshold 50.0 51.4 54.0 v 1, 2, 3 shutdown voltage hysteresis 2.0 5.3 8.0 v 1, 2, 3 maximum input current 9.5 a vin = 16v; iout = 20a 1, 2, 3 no load input current (operating) 110 160 ma 1, 2, 3 disabled input current (ena1) 2 5 ma v in = 16v, 28v, 50v 1, 2, 3 disabled input current (ena2) 25 50 ma vin = 16v, 28v, 50v 1, 2, 3 input terminal current ripple (peak to peak) 40 60 ma bandwidth = 100 khz C 10 mhz; see figure 14 1, 2, 3 output characteristics output voltage set point (t case = 25oc) 5.94 6.00 6.06 v vout at sense leads 1 output voltage set point over temperature 5.90 6.00 6.10 v 2, 3 output voltage line regulation -20 0 20 mv ; vin = 16v, 28v, 50v 1, 2, 3 output voltage load regulation 20 30 40 mv ; vout @ (iout=0a) - vout @ (iout=20a) 1, 2, 3 total output voltage range 5.88 6.00 6.12 v 1, 2, 3 output voltage ripple and noise peak to peak 15 40 mv bandwidth = 10 mhz; c l =11f 1, 2, 3 operating output current range 0 20 a 1, 2, 3 operating output power range 0 120 w 1, 2, 3 output dc current-limit inception 4 21 23 25 a 1, 2, 3 short circuit output current 21 24 27 a vout 1.2v 1, 2, 3 back-drive current limit while enabled 6.4 a 1, 2, 3 back-drive current limit while disabled 10 50 ma 1, 2, 3 maximum output capacitance 10,000 f see note 5 dynamic characteristics output voltage deviation load transient 6 for a positive step change in load current -450 -350 mv total iout step = 10a ? 20a, 0a ? 10a; c l =11f 4, 5, 6 for a negative step change in load current 350 450 mv 4, 5, 6 settling time (either case) 7 100 300 s 4, 5, 6 output voltage deviation line transient 8 for a positive step change in line voltage -500 500 mv vin step = 16v ? 50v; c l =11f 4, 5, 6 for a negative step change in line voltage -500 500 mv 4, 5, 6 settling time (either case) 7 250 500 s see note 5 turn-on transient output voltage rise time 6 10 ms vout = 0.6v ? 5.4v 4, 5, 6 output voltage overshoot 0 2 % see note 5 turn-on delay, rising vin 9 11 5.5 8.0 ms ena1, ena2 = 5v 4, 5, 6 turn-on delay, rising ena1 11 3.0 6.0 ms ena2 = 5v 4, 5, 6 turn-on delay, rising ena2 11 1.5 3.0 ms ena1 = 5v 4, 5, 6 efficiency iout = 20a (16vin) 85 89 % 1, 2, 3 iout = 10a (16vin) 88 91 % 1, 2, 3 iout = 20a (28vin) 85 89 % 1, 2, 3 iout = 10a (28vin) 86 90 % 1, 2, 3 iout = 20a (40vin) 84 88 % 1, 2, 3 iout = 10a (40vin) 85 89 % 1, 2, 3 load fault power dissipation 18 32 w iout at current limit inception point 4 1, 2, 3 short circuit power dissipation 20 33 w vout 1.2v 1, 2, 3 mqfl-28-06s electrical characteristics
pr oduct # mqfl-28-06s phone 1-888-567-9596 www .synqor .com doc.# 005-2mq060s rev. b 11/29/07 page 4 output: output: current: current: 6.0 v 6.0 v 20 a 20 a mqfl-28-06s mqfl-28-06s t t t t e e e e c c c c h h h h n n n n i i i i c c c c a a a a l l l l s s s s p p p p e e e e c c c c i i i i f f f f i i i i c c c c a a a a t t t t i i i i o o o o n n n n parameter min. nom. max. units notes & conditions group a vin=28v dc 5%, iout = 20a, c l = 0 f, free running 10 subgroup 13 unless otherwise specified isolation characteristics i solation voltage (dielectric strength) input rtn to output rtn 500 v 1 any input pin to case 500 v 1 any output pin to case 500 v 1 i solation resistance (input rtn to output rtn) 100 m w 1 isolation resistance (any pin to case) 100 m w 1 isolation capacitance (input rtn to output rtn) 44 nf 1 feature characteristics switching frequency (free running) 500 550 600 khz 1, 2, 3 synchronization input frequency range 500 700 khz 1, 2, 3 logic level high 2 10 v 1, 2, 3 logic level low -0.5 0.8 v 1, 2, 3 duty cycle 20 80 % see note 5 synchronization output pull down current 20 ma vsync out = 0.8v see note 5 duty cycle 25 75 % output connected to sync in of another mqfl conver t er see note 5 enable control (ena1 and ena2) off-state voltage 0.8 v 1, 2, 3 module off pulldown current 80 a current drain required to ensure module is off see note 5 on-state voltage 2 v 1, 2, 3 module on pin leakage current 20 a maximum current draw from pin allowed with module still on see note 5 pull-up v oltage 3.2 4.0 4.5 v see figure a 1, 2, 3 reliability characteristics calculated mtbf (mil-std-217f2) gb @ t case =70 o c 2800 10 3 hrs. aif @ t case =70 o c 440 10 3 hrs. demonstrated mtbf tbd 10 3 hrs. weight characteristics device weight 79 g mqfl-28-06s electrical characteristics (continued) electrical characteristics notes 1. converter will undergo input over-voltage shutdown. 2. derate output power to 50% of rated power at tcase = 135o c. 3. high or low state of input voltage must persist for about 200 s to be acted on by the lockout or shutdown circuitry. 4. current limit inception is defined as the point where the output voltage has dropped to 90% of its nominal value. 5. parameter not tested but guaranteed to the limit specified. 6. load current transition time 3 10 s. 7. settling time measured from start of transient to the point where the output voltage has returned to 1% of its final value. 8. line voltage transition time 3 100 s. 9. input voltage rise time 250 s. 10. operating the converter at a synchronization frequency above the free running frequency will cause the converters efficiency to be slightly reduced and it may also cause a slight reduction in the maximum output current/power available. for more information consult the factor y. 11. after a disable or fault event, module is inhibited from restarting for 300ms. see shut down section on page 9 . 12. share pin outputs a power failure warning pulse during a fault condition. see current share section on page 11 . 13. only the es and hb grade products are tested at three temperatures. the b and c grade products are tested at one temperature. please refer to the ess table on page 13 for details. 14. these derating curves apply for the es- and hb- grade products. the c- grade product has a maximum case temperature of 100o c and a maximum junction temperature rise of 20o c above t case . the b- grade product has a maximum case temperature of 85o c and a maximum junction tempera- ture rise of 20o c at full load.
pr oduct # mqfl-28-06s phone 1-888-567-9596 www .synqor .com doc.# 005-2mq060s rev. b 11/29/07 page 5 output: output: current: current: 6.0 v 6.0 v 20 a 20 a mqfl-28-06s mqfl-28-06s t t t t e e e e c c c c h h h h n n n n i i i i c c c c a a a a l l l l s s s s p p p p e e e e c c c c i i i i f f f f i i i i c c c c a a a a t t t t i i i i o o o o n n n n 60 65 70 75 80 85 90 95 1 00 0 4 8 12 16 20 load current (a) efficiency (%) 16 vin 28 vin 40 vin figure 1: efficiency at nominal output voltage vs. load current for min- imum, nominal, and maximum input voltage at t case =25 c. 60 65 70 75 80 85 90 95 1 00 -55oc 25oc 125oc case temperature (oc) efficiency (%) 16 vin 2 8 vin 40 vin figure 2: efficiency at nominal output voltage and 60% rated power vs. case temperature for input voltage of 16v, 28v, and 40v . 0 2 4 6 8 10 12 14 16 18 20 0 4 8 12 16 20 load current (a) power dissipation (w) 16 vin 28 vin 40 vin figure 3: power dissipation at nominal output voltage vs. load current for minimum, nominal, and maximum input voltage at t case =25 c. 0 2 4 6 8 10 12 14 16 18 20 -55oc 25oc 125oc case temperature (oc) power dissipation (w) 16 vin 28 vin 40 vin figure 4: power dissipation at nominal output voltage and 60% rated power vs. case temperature for input voltage of 16v, 28v, and 40v. 0 4 8 12 16 20 24 28 32 25 45 65 85 105 125 145 c ase temperature (oc) iout (a) 0 24 48 72 96 120 144 168 192 = 105oc = 125oc = 145oc pout (w) figure 5: output current / output power derating curve as a function of t case and the maximum desired power mosfet junction tempera - ture at vin = 28v (see note 14). 0 1 2 3 4 5 6 7 0 5 10 15 20 25 load current (a) output voltage (v) 28 vin figure 6: output voltage vs. load current showing typical current limit curves. t j max t j max t j max 135
pr oduct # mqfl-28-06s phone 1-888-567-9596 www .synqor .com doc.# 005-2mq060s rev. b 11/29/07 page 6 output: output: current: current: 6.0 v 6.0 v 20 a 20 a mqfl-28-06s mqfl-28-06s t t t t e e e e c c c c h h h h n n n n i i i i c c c c a a a a l l l l s s s s p p p p e e e e c c c c i i i i f f f f i i i i c c c c a a a a t t t t i i i i o o o o n n n n figure 7: turn-on transient at full resistive load and zero output capac- itance initiated by ena1. input voltage pre-applied. ch 1: v out (1v/div). ch 2: ena1 (5v/div). figure 8: turn-on transient at full resistive load and 10 mf output capacitance initiated by ena1. input voltage pre-applied. ch 1: v out (1v/div). ch 2: ena1 (5v/div). figure 9: turn-on transient at full resistive load and zero output capac- itance initiated by ena2. input voltage pre-applied. ch 1: vout (1v/div). ch 2: ena2 (5v/div). figure 10: turn-on transient at full resistive load and zero output capacitance initiated by vin. ena1 and ena2 both previously high. ch 1: vout (1v/div). ch 2: vin (10v/div). figure 11 : output voltage response to step-change in load current (50%- 100%-50% of iout (max). load cap: 1 f ceramic cap and 10 f, 100 m w esr tantalum cap. ch 1: vout (300mv/div). ch 2: iout (10a/div). figure 12 : output voltage response to step-change in load current (0%-50%- 0% of iout (max). load cap: 1 f ceramic cap and 10 f, 100 m w esr tanta- lum cap. ch 1: vout (300mv/div). ch 2: iout (10a/div).
pr oduct # mqfl-28-06s phone 1-888-567-9596 www .synqor .com doc.# 005-2mq060s rev. b 11/29/07 page 7 output: output: current: current: 6.0 v 6.0 v 20 a 20 a mqfl-28-06s mqfl-28-06s t t t t e e e e c c c c h h h h n n n n i i i i c c c c a a a a l l l l s s s s p p p p e e e e c c c c i i i i f f f f i i i i c c c c a a a a t t t t i i i i o o o o n n n n figure 13 : output voltage response to step-change in input voltage (16v - 50v - 16v). load cap: 10 f, 100 m w esr tantalum cap and 1 f ceramic cap. ch 1: vout (200mv/div). ch 2: vin (20v/div). figure 14: test set-up diagram showing measurement points for input t erminal ripple cur r ent (figure 15) and output voltage ripple (figure 16). mqfl converter mqme filter see fig. 15 see fig. 16 1 f ceramic capacitor 10 f, 100m w esr capacitor v source i c v out figure 15: input terminal current ripple, i c , at full rated output current and nominal input voltage with synqor mq filter module (50 ma/div). bandwidth: 20mhz. see figure 14. figure 16: output voltage ripple, vout, at nominal input voltage and rated load current (10 mv/div). load capacitance: 1 f ceramic capac- itor and 10 f tantalum capacitor. bandwidth: 10 mhz. see figure 14. figure 17: rise of output voltage after the removal of a short circuit acr oss the output terminals. ch 1: vout (1v/div). ch 2: iout (10a/div). figure 18: sync out vs. time, driving sync in of a second synqor mqfl converter. ch1: sync out: (1v/div).
pr oduct # mqfl-28-06s phone 1-888-567-9596 www .synqor .com doc.# 005-2mq060s rev. b 11/29/07 page 8 output: output: current: current: 6.0 v 6.0 v 20 a 20 a mqfl-28-06s mqfl-28-06s t t t t e e e e c c c c h h h h n n n n i i i i c c c c a a a a l l l l s s s s p p p p e e e e c c c c i i i i f f f f i i i i c c c c a a a a t t t t i i i i o o o o n n n n 0.001 0.01 0 .1 10 100 1,000 10,000 100,000 hz output impedance (ohms) 16vin 28vin 40vin figure 23: high frequency conducted emissions of standalone mqfl-28- 05s, 5vout module at 120w output, as measured with method ce102. limit line shown is the 'basic curve' for all applications with a 28v source. figure 24: high frequency conducted emissions of mqfl-28-05s, 5vout mod- ule at 120w output with mqfl-28-p filter, as measured with method ce102. limit line shown is the 'basic curve' for all applications with a 28v source. figure 19: magnitude of incremental output impedance (z out = v out /i out ) for minimum, nominal, and maximum input voltage at full rated power . -100 -90 -80 -70 -60 -50 -40 -30 -20 -10 0 10 1 00 1 ,000 1 0,000 1 00,000 hz forward transmission (db) 16vin 28vin 40vin figure 20: magnitude of incremental forward transmission (ft = v out /v in ) for minimum, nominal, and maximum input voltage at full rated power . -50 -40 -30 -20 -10 0 10 10 100 1,000 10,000 100,000 hz reverse transmission (db) 16vin 28vin 40vin figure 21: magnitude of incremental reverse transmission (rt = i in /i out ) for minimum, nominal, and maximum input voltage at full rated power. 0.01 0.1 1 10 100 10 100 1,000 10,000 100,000 hz input impedance (ohms) 16vin 28vin 40vin figure 22: magnitude of incremental input impedance (z in = v in /i in ) for minimum, nominal, and maximum input voltage at full rated power.
pr oduct # mqfl-28-06s phone 1-888-567-9596 www .synqor .com doc.# 005-2mq060s rev. b 11/29/07 page 9 output: output: current: current: 6.0 v 6.0 v 20 a 20 a mqfl-28-06s mqfl-28-06s t t t t e e e e c c c c h h h h n n n n i i i i c c c c a a a a l l l l s s s s p p p p e e e e c c c c i i i i f f f f i i i i c c c c a a a a t t t t i i i i o o o o n n n n basic operation and features the mqfl dc/dc converter uses a two-stage power conversion topology. the first, or regulation, stage is a buck-converter that keeps the output voltage constant over variations in line, load, and temperature. the second, or isolation, stage uses transform- ers to provide the functions of input/output isolation and voltage transformation to achieve the output voltage required. both the regulation and the isolation stages switch at a fixed fre- quency for predictable emi performance. the isolation stage switches at one half the frequency of the regulation stage, but due to the push-pull nature of this stage it creates a ripple at dou- ble its switching frequency. as a result, both the input and the output of the converter have a fundamental ripple frequency of about 550 khz in the free-running mode. rectification of the isolation stages output is accomplished with synchronous rectifiers. these devices, which are mosfets with a very low resistance, dissipate far less energy than would schottky diodes. this is the primary reason why the mqfl con- ver ters have such high efficiency, particularly at low output volt - ages. besides improving efficiency, the synchronous rectifiers per mit operation down to zero load current. there is no longer a need for a minimum load, as is typical for converters that use diodes for rectification. the synchronous rectifiers actually permit a neg- ative load current to flow back into the converters output termi- nals if the load is a source of short or long term energy. the mqfl converters employ a back-drive current limit to keep this negative output terminal current small. there is a control circuit on both the input and output sides of the mqfl converter that determines the conduction state of the power switches. these circuits communicate with each other across the isolation barrier through a magnetically coupled device. no opto-isolators are used. a separate bias supply provides power to both the input and out - put control circuits. among other things, this bias supply per mits the converter to operate indefinitely into a short circuit and to avoid a hiccup mode, even under a tough start-up condition. an input under-voltage lockout feature with hysteresis is provided, as well as an input over-voltage shutdown. there is also an out- put current limit that is nearly constant as the load impedance decreases to a short circuit (i.e., there is not fold-back or fold-for- ward characteristic to the output current under this condition). when a load fault is removed, the output voltage rises exponen- tially to its nominal value without an overshoot. the mqfl converters control circuit does not implement an out- put over-voltage limit or an over-temperature shutdown. the following sections describe the use and operation of addi- tional control features provided by the mqfl converter. control features enable : the mqfl converter has two enable pins. both must have a logic high level for the converter to be enabled. a logic low on either pin will inhibit the converter. the ena1 pin (pin 4) is referenced with respect to the converters input return (pin 2). the ena2 pin (pin 12) is referenced with respect to the converters output return (pin 8). this permits the converter to be inhibited from either the input or the output side. regardless of which pin is used to inhibit the converter, the reg- ulation and the isolation stages are turned off. however, when the converter is inhibited through the ena1 pin, the bias supply is also turned off, whereas this supply remains on when the con - ver ter is inhibited through the ena2 pin. a higher input standby current therefore results in the latter case. both enable pins are internally pulled high so that an open con- nection on both pins will enable the converter. figure a shows the equivalent circuit looking into either enable pins. it is ttl compatible. shut down : the mqfl converter will shut down in response to only four conditions: ena1 input low, ena2 input low, vin input below under-voltage lockout threshold, or vin input above over -voltage shutdown threshold. following a shutdown event, there is a startup inhibit delay which will prevent the conver ter 2n3904 1n4148 250k 125k 82k 5.6v to enable circuitry pin 4 (or pin 12) pin 2 (or pin 8) rtn enable figure a: equivalent circuit looking into either the ena1 or ena2 pins with respect to its corresponding return pin.
pr oduct # mqfl-28-06s phone 1-888-567-9596 www .synqor .com doc.# 005-2mq060s rev. b 11/29/07 page 10 output: output: current: current: 6.0 v 6.0 v 20 a 20 a mqfl-28-06s mqfl-28-06s t t t t e e e e c c c c h h h h n n n n i i i i c c c c a a a a l l l l s s s s p p p p e e e e c c c c i i i i f f f f i i i i c c c c a a a a t t t t i i i i o o o o n n n n from restarting for approximately 300ms. after the 300ms delay elapses, if the enable inputs are high and the input voltage is within the operating range, the converter will restart. if the vin input is brought down to nearly 0v and back into the operating range, there is no startup inhibit, and the output voltage will rise according to the "turn-on delay, rising vin" specification. remote sense : the purpose of the remote sense pins is to correct for the voltage drop along the conductors that connect the converters output to the load. to achieve this goal, a separate conductor should be used to connect the +sense pin (pin 10) directly to the positive terminal of the load, as shown in the con- nection diagram on page 2 . similarly, the Csense pin (pin 9) should be connected through a separate conductor to the return terminal of the load. note: even if remote sensing of the load voltage is not desired, the +sense and the -sense pins must be connected to +v out (pin 7) and output return (pin 8), respectively, to get proper regulation of the conver ter s output. if they are left open, the con - ver ter will have an output voltage that is approximately 200mv higher than its specified value. if only the +sense pin is left open, the output voltage will be approximately 25mv too high. inside the converter, +sense is connected to +vout with a 100 w resistor and Csense is connected to output return with a 10 w resistor. it is also important to note that when remote sense is used, the voltage across the converters output terminals (pins 7 and 8) will be higher than the converters nominal output voltage due to resistive drops along the connecting wires. this higher voltage at the terminals produces a greater voltage stress on the convert- ers internal components and may cause the converter to fail to deliver the desired output voltage at the low end of the input volt- age range at the higher end of the load current and temperature range. please consult the factory for details. synchronization : the mqfl converters switching fre- quency can be synchronized to an external frequency source that is in the 500 khz to 700 khz range. a pulse train at the desired frequency should be applied to the sync in pin (pin 6) with respect to the input return (pin 2). this pulse train should have a duty cycle in the 20% to 80% range. its low value should be below 0.8v to be guaranteed to be interpreted as a logic low , and its high value should be above 2.0v to be guaranteed to be interpreted as a logic high. the transition time between the two states should be less than 300ns. if the mqfl converter is not to be synchronized, the sync in pin should be left open circuit. the converter will then operate in its free-running mode at a frequency of approximately 550 khz. if, due to a fault, the sync in pin is held in either a logic low or logic high state continuously, the mqfl converter will revert to its free-running frequency. the mqfl converter also has a sync out pin (pin 5). this out- put can be used to drive the sync in pins of as many as ten (10) other mqfl converters. the pulse train coming out of sync out has a duty cycle of 50% and a frequency that matches the switching frequency of the converter with which it is associated. this frequency is either the free-running frequency if there is no synchronization signal at the sync in pin, or the synchroniza- tion frequency if there is. the sync out signal is available only when the dc input volt- age is above approximately 12v and when the converter is not inhibited through the ena1 pin. an inhibit through the ena2 pin will not turn the sync out signal off. note: an mqfl converter that has its sync in pin driven by the sync out pin of a second mqfl converter will have its star t of its switching cycle delayed approximately 180 degrees rela - tive to that of the second conver ter . figure b shows the equivalent circuit looking into the sync in pin. figure c shows the equivalent circuit looking into the sync out pin. pin 2 pin 6 5k 5v sync in in rtn to sync circuitry 5k figure b: equivalent circuit looking into the sync in pin with respect to the in rtn (input return) pin. from sync circuitry 5k 5v sync out in r tn pin 2 pin 5 open collector output figure c: equivalent circuit looking into sync out pin with respect to the in rtn (input return) pin.
pr oduct # mqfl-28-06s phone 1-888-567-9596 www .synqor .com doc.# 005-2mq060s rev. b 11/29/07 page 11 output: output: current: current: 6.0 v 6.0 v 20 a 20 a mqfl-28-06s mqfl-28-06s t t t t e e e e c c c c h h h h n n n n i i i i c c c c a a a a l l l l s s s s p p p p e e e e c c c c i i i i f f f f i i i i c c c c a a a a t t t t i i i i o o o o n n n n current share : when several mqfl converters are placed in parallel to achieve either a higher total load power or n+1 redundancy, their share pins (pin 11) should be connected together. the voltage on this common share node represents the average current delivered by all of the paralleled converters. each converter monitors this average value and adjusts itself so that its output current closely matches that of the average. since the share pin is monitored with respect to the output return (pin 8) by each converter, it is important to connect all of the converters output return pins together through a low dc and ac impedance. when this is done correctly, the con- verters will deliver their appropriate fraction of the total load cur- rent to within +/- 10% at full rated load. whether or not converters are paralleled, the voltage at the share pin could be used to monitor the approximate average current delivered by the converter(s). a nominal voltage of 1.0v represents zero current and a nominal voltage of 2.2v represents the maximum rated current, with a linear relationship in between. the internal source resistance of a converters share pin signal is 2.5 k w . during an input voltage fault or primary disable event, the share pin outputs a power failure warning pulse. the share pin will go to 3v for approximately 14ms as the output voltage falls. note: converters operating from separate input filters with reverse polarity protection (such as the mqme-28-t filter) with their outputs connected in parallel may exhibit hiccup operation at light loads. consult factory for details. output voltage trim : if desired, it is possible to increase the mqfl converters output voltage above its nominal value. to do this, use the +sense pin (pin 10) for this trim function instead of for its normal remote sense function, as shown in figure d. in this case, a resistor connects the +sense pin to the Csense pin (which should still be connected to the output return, either remotely or locally). the value of the trim resistor should be cho - sen according to the following equation or from figure e: rtrim = 100 x vnom [ v out C vnom C 0.025 ] where: vnom = the converters nominal output voltage, vout = the desired output voltage (greater than vnom), and rtrim is in ohms. as the output voltage is trimmed up, it produces a greater voltage stress on the converters internal components and may cause the conver ter to fail to deliver the desired output voltage at the low end of the input voltage range at the higher end of the load cur - rent and temperature range. please consult the factory for details. factory trimmed converters are available by request. 100 1,000 10,000 100,000 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 increase in vout (v) trim resistance (ohms) figure e: output voltage trim graph figure d: typical connection for output voltage trimming. 28vdc +vin load in rtn case ena 1 sync out sync in ena 2 share + sns C sns out rtn +vout 1 2 3 4 5 6 12 11 10 9 8 7 open means on rtrim + C + C
pr oduct # mqfl-28-06s phone 1-888-567-9596 www .synqor .com doc.# 005-2mq060s rev. b 11/29/07 page 12 output: output: current: current: 6.0 v 6.0 v 20 a 20 a mqfl-28-06s mqfl-28-06s t t t t e e e e c c c c h h h h n n n n i i i i c c c c a a a a l l l l s s s s p p p p e e e e c c c c i i i i f f f f i i i i c c c c a a a a t t t t i i i i o o o o n n n n input under-voltage lockout : the mqfl converter has an under-voltage lockout feature that ensures the converter will be off if the input voltage is too low. the threshold of input voltage at which the converter will turn on is higher that the threshold at which it will turn off. in addition, the mqfl converter will not respond to a state of the input voltage unless it has remained in that state for more than about 200 s. this hysteresis and the delay ensure proper operation when the source imped- ance is high or in a noisy environment. input over-voltage shutdown : the mqfl converter also has an over-voltage feature that ensures the converter will be off if the input voltage is too high. it also has a hysteresis and time delay to ensure proper operation. back-drive current limit : converters that use mosfets as synchronous rectifiers are capable of drawing a negative cur - rent from the load if the load is a source of short- or long-ter m energy . this negative current is referred to as a back-drive cur - rent. conditions where back-drive current might occur include paral - leled converters that do not employ current sharing, or where the current share feature does not adequately ensure sharing during the startup or shutdown transitions. it can also occur when con- verters having different output voltages are connected together through either explicit or parasitic diodes that, while normally off, become conductive during startup or shutdown. finally, some loads, such as motors, can return energy to their power rail. even a load capacitor is a source of back-drive energy for some period of time during a shutdown transient. to avoid any problems that might arise due to back-drive current, the mqfl converters limit the negative current that the converter can draw from its output terminals. the threshold for this back- drive current limit is placed sufficiently below zero so that the converter may operate properly down to zero load, but its absolute value (see the electrical characteristics page) is small compared to the converters rated output current. thermal considerations : figure 5 shows the suggested power derating curves for this converter as a function of the case temperature and the maximum desired power mosfet junction temperature. all other components within the converter are cool- er than its hottest mosfet, which at full power is no more than 20oc higher than the case temperature directly below this mos - fet . the mil-hdbk-1547a component derating guideline calls for a maximum component temperature of 105oc. figure 5 therefore has one power derating curve that ensures this limit is main- tained. it has been synqors extensive experience that reliable long-term converter operation can be achieved with a maximum component temperature of 125oc. in extreme cases, a maximum temperature of 145oc is permissible, but not recommended for long-term operation where high reliability is required. derating curves for these higher temperature limits are also included in figure 5 . the maximum case temperature at which the convert- er should be operated is 135oc. when the converter is mounted on a metal plate, the plate will help to make the converters case bottom a uniform temperature. how well it does so depends on the thickness of the plate and on the thermal conductance of the interface layer (e.g. thermal grease, thermal pad, etc.) between the case and the plate. unless this is done very well, it is important not to mistake the plate s temperature for the maximum case temperature. it is easy for them to be as much as 5-10oc different at full power and at high temperatures. it is suggested that a thermocouple be attached directly to the converters case through a small hole in the plate when investigating how hot the converter is getting. care must also be made to ensure that there is not a large ther- mal resistance between the thermocouple and the case due to whatever adhesive might be used to hold the thermocouple in place. input system instability : this condition can occur because any dc/dc converter appears incrementally as a negative resistance load. a detailed application note titled input system instability is available on the synqor website which provides an understanding of why this instability arises, and shows the preferred solution for correcting it.
pr oduct # mqfl-28-06s phone 1-888-567-9596 www .synqor .com doc.# 005-2mq060s rev. b 11/29/07 page 13 output: output: current: current: 6.0 v 6.0 v 20 a 20 a mqfl-28-06s mqfl-28-06s t t t t e e e e c c c c h h h h n n n n i i i i c c c c a a a a l l l l s s s s p p p p e e e e c c c c i i i i f f f f i i i i c c c c a a a a t t t t i i i i o o o o n n n n construction and environmental stress screening options milqor converters and filters are offered in four variations of construction technique and environmental stress screening options. the three highest grades, c, es, and hb, all use synqors proprietary qorseal? hi-rel assembly process that includes a parylene-c coat- ing of the circuit, a high performance thermal compound filler, and a nickel barrier gold plated aluminum case. the b-grade version uses a ruggedized assembly process that includes a medium performance thermal compound filler and a black anodized aluminum case ? . each successively higher grade has more stringent mechanical and electrical testing, as well as a longer burn-in cycle. the es- and hb-grades are also constructed of components that have been procured through an element evaluation process that pre-qualifies each new batch of devices. ? note: since the surface of the black anodized case is not guaranteed to be electrically conductive, a star washer or similar device should be used to cut through the surface oxide if electrical connection to the case is desired. qorseal qorseal qorseal ruggedized construction process yes yes * * 2009 external visual full qorseal full qorseal full qorseal anodized package mechanical seal, thermal, and coating process +25 o c 24 hrs @ +125 o c no no y es c-grade (-40 o c to +100 o c) * per ipc-a-610 (rev. d) class 3 160 hrs @ +125 o c 96 hrs @ +125 o c 12 hrs @ +100 o c method 1015 load cycled ? 10s period ? 2s @ 100% load ? 8s @ 0% load burn-in c ondition a (5000g) 500g no m ethod 2001 (y1 direction) constant acceleration condition c (-65 o c to +150 o c) condition b (-55 o c to +125 o c) no method 1010 temperature cycle y es y es y es * internal visual -55, +25, +125 o c -45, +25, +100 o c +25 o c method 5005 (group a) final electrical test hb-grade (-55 o c to +125 o c) (element evaluation) es-grade (-55 o c to +125 o c) (element evaluation) b-grade (-40 o c to +85 o c) consistent with mil-std-883f screening qorseal qorseal qorseal ruggedized construction process yes yes * * 2009 external visual full qorseal full qorseal full qorseal anodized package mechanical seal, thermal, and coating process +25 o c 24 hrs @ +125 o c no no y es c-grade (-40 o c to +100 o c) * per ipc-a-610 (rev. d) class 3 160 hrs @ +125 o c 96 hrs @ +125 o c 12 hrs @ +100 o c method 1015 load cycled ? 10s period ? 2s @ 100% load ? 8s @ 0% load burn-in c ondition a (5000g) 500g no m ethod 2001 (y1 direction) constant acceleration condition c (-65 o c to +150 o c) condition b (-55 o c to +125 o c) no method 1010 temperature cycle y es y es y es * internal visual -55, +25, +125 o c -45, +25, +100 o c +25 o c method 5005 (group a) final electrical test hb-grade (-55 o c to +125 o c) (element evaluation) es-grade (-55 o c to +125 o c) (element evaluation) b-grade (-40 o c to +85 o c) consistent with mil-std-883f screening
pr oduct # mqfl-28-06s phone 1-888-567-9596 www .synqor .com doc.# 005-2mq060s rev. b 11/29/07 page 14 output: output: current: current: 6.0 v 6.0 v 20 a 20 a mqfl-28-06s mqfl-28-06s t t t t e e e e c c c c h h h h n n n n i i i i c c c c a a a a l l l l s s s s p p p p e e e e c c c c i i i i f f f f i i i i c c c c a a a a t t t t i i i i o o o o n n n n pin # function 1 positive input 2 input return 3 case 4 enable 1 5 sync output 6 sync input 7 positive output 8 output return 9 - sense 10 + sense 11 share 12 enable 2 package pinouts mqfl-28-06s-x-hb dc/dc converter 28vin 6.0vout @ 20a MQFL-28-06S-Y-HB dc/dc converter 28vin 6.0vout @ 20a notes 1) case: aluminum with gold over nick- el plate finish for the c-, es-, and hb- grade products. aluminum with black anodized finish for the b-grade products. 2) pins: diameter: 0.040 (1.02mm) material: copper finish: gold over nickel plate 3) all dimensions as inches (mm) 4) tolerances: a) x.xx + 0.02 (x.x + 0.5mm) b) x.xxx + 0.010 (x.xx + 0.25mm) 5) w eight: 2.8 oz. (79 g) typical 6) w orkmanship: meets or exceeds ipc- a-610c class iii
pr oduct # mqfl-28-06s phone 1-888-567-9596 www .synqor .com doc.# 005-2mq060s rev. b 11/29/07 page 15 output: output: current: current: 6.0 v 6.0 v 20 a 20 a mqfl-28-06s mqfl-28-06s t t t t e e e e c c c c h h h h n n n n i i i i c c c c a a a a l l l l s s s s p p p p e e e e c c c c i i i i f f f f i i i i c c c c a a a a t t t t i i i i o o o o n n n n milqor mqfl family matrix the tables below show the array of mqfl converters available. when ordering synqor converters, please ensure that you use the complete part number according to the table in the last page. contact the factory for other requirements. single output converters triple output converters d ual output converters ? 40a 40a 40a 40a 40a 40a 40a 1.5v ( 1r5s) 3.3a 6.5 8a 11a 13a 17a 20a 30a 40a 40a mqfl m qfl - - 270e 2 70e 130 1 30 - - 475vin cont. 4 75vin cont. 130 130 - - 520vin 0.1s trans. 520vin 0.1s trans. * * absolute max vin = 600v absolute max vin = 600v 10a 16a 13a 13a 16a 16a 7.5v ( 7r5s) 28v ( 28s) 15v ( 15s) 12v ( 12s) 9v ( 09s) 6v ( 06s) 5v ( 05s) 3.3v ( 3r3s) 2.5v ( 2r5s) 1.8v ( 1r8s) 2.7a 4a 3.3a 3.3a 4a 4a 5a 6a 8a 12a 15a 22a 30a 40a mqfl mqfl - - 270l 270l 65 65 - - 3 50vin cont. 350vin cont. 65 65 - - 475vin 0.1s trans. 4 75vin 0.1s trans. * * a bsolute max vin = 550v absolute max vin = 550v 8a 10a 13a 20a 24a 30a 40a 40a mqfl mqfl - - 270 270 155 155 - - 400vin cont. 400vin cont. 155 155 - - 475vin 0.1s trans. 475vin 0.1s trans. * * absolute max vin = 550v a bsolute max vin = 550v 6.5 8a 11a 17a 20a 30a 40a 40a mqfl mqfl - - 28ve 28ve 16 16 - - 70vin cont. 7 0vin cont. 5 .5 5.5 - - 8 0vin 1s trans. 80vin 1s trans. * * absolute max vin = 100v absolute max vin = 100v 6.5 8a 11a 17a 20a 30a 40a 40a mqfl mqfl - - 28v 28v 16 16 - - 4 0vin cont. 40vin cont. 5.5 5.5 - - 50vin 1s trans. 50vin 1s trans. * * absolute max vin = 60v a bsolute max vin = 60v 8a 10a 13a 20a 24a 30a 40a 40a mqfl mqfl - - 28e 28e 16 16 - - 7 0vin cont. 70vin cont. 16 16 - - 80vin 1s trans. 80vin 1s trans. * * a bsolute max vin =100v absolute max vin =100v 8a 10a 13a 20a 24a 30a 40a 40a mqfl mqfl - - 28 28 16 16 - - 40vin cont. 4 0vin cont. 16 16 - - 50vin 1s trans. 50vin 1s trans. * * absolute max vin = 60v absolute max vin = 60v 40a 40a 40a 40a 40a 40a 40a 1.5v ( 1r5s) 3.3a 6.5 8a 11a 13a 17a 20a 30a 40a 40a mqfl m qfl - - 270e 2 70e 130 1 30 - - 475vin cont. 4 75vin cont. 130 130 - - 520vin 0.1s trans. 520vin 0.1s trans. * * absolute max vin = 600v absolute max vin = 600v 10a 16a 13a 13a 16a 16a 7.5v ( 7r5s) 28v ( 28s) 15v ( 15s) 12v ( 12s) 9v ( 09s) 6v ( 06s) 5v ( 05s) 3.3v ( 3r3s) 2.5v ( 2r5s) 1.8v ( 1r8s) 2.7a 4a 3.3a 3.3a 4a 4a 5a 6a 8a 12a 15a 22a 30a 40a mqfl mqfl - - 270l 270l 65 65 - - 3 50vin cont. 350vin cont. 65 65 - - 475vin 0.1s trans. 4 75vin 0.1s trans. * * a bsolute max vin = 550v absolute max vin = 550v 8a 10a 13a 20a 24a 30a 40a 40a mqfl mqfl - - 270 270 155 155 - - 400vin cont. 400vin cont. 155 155 - - 475vin 0.1s trans. 475vin 0.1s trans. * * absolute max vin = 550v a bsolute max vin = 550v 6.5 8a 11a 17a 20a 30a 40a 40a mqfl mqfl - - 28ve 28ve 16 16 - - 70vin cont. 7 0vin cont. 5 .5 5.5 - - 8 0vin 1s trans. 80vin 1s trans. * * absolute max vin = 100v absolute max vin = 100v 6.5 8a 11a 17a 20a 30a 40a 40a mqfl mqfl - - 28v 28v 16 16 - - 4 0vin cont. 40vin cont. 5.5 5.5 - - 50vin 1s trans. 50vin 1s trans. * * absolute max vin = 60v a bsolute max vin = 60v 8a 10a 13a 20a 24a 30a 40a 40a mqfl mqfl - - 28e 28e 16 16 - - 7 0vin cont. 70vin cont. 16 16 - - 80vin 1s trans. 80vin 1s trans. * * a bsolute max vin =100v absolute max vin =100v 8a 10a 13a 20a 24a 30a 40a 40a mqfl mqfl - - 28 28 16 16 - - 40vin cont. 4 0vin cont. 16 16 - - 50vin 1s trans. 50vin 1s trans. * * absolute max vin = 60v absolute max vin = 60v 1 5a total 20a total 20a total 20a total 20a t otal 20a total 20a total 5v (05d) 6.5a total 8a total mqfl m qfl - - 270e 2 70e 1 30 1 30 - - 4 75vin cont. 4 75vin cont. 130 130 - - 520vin 0.1s trans. 520vin 0.1s trans. * * a bsolute max vin = 600v absolute max vin = 600v 15v (15d) 12v (12d) 6a total 10a total 8a total 8a t otal 10a total 10a total 5a total 8a total 6.5a total 6.5a t otal 8a total 8a total m qfl mqfl - - 2 70l 270l 65 65 - - 3 50vin cont. 350vin cont. 65 65 - - 4 75vin 0.1s trans. 475 vin 0.1s trans. * * absolute max vin = 550v a bsolute max vin = 550v mq fl m qfl - - 270 2 70 1 55 1 55 - - 4 00vin cont. 4 00vin cont. 155 155 - - 475 vin 0.1s trans. 47 5vin 0.1s trans. * * a bsolute max vin = 550v absolute max vin = 550v mqfl mq fl - - 28ve 28ve 16 16 - - 70vin cont. 7 0vin cont. 5.5 5.5 - - 80vin 1s trans. 80vin 1s trans. * * absolute max vin = 100v absolute max vin = 100v mqfl mqfl - - 28v 28v 16 16 - - 40vin cont. 40vin cont. 5.5 5.5 - - 50vin 1s trans. 50vin 1s trans. * * a bsolute max vin = 60v absolute max vin = 60v mqfl mqfl - - 28e 28e 16 16 - - 70vin cont. 70vin cont. 16 16 - - 80vin 1s trans. 80vin 1s trans. * * absolute max vin =100v absolute max vin =100v mqfl mqfl - - 28 28 16 16 - - 40vin cont. 40vin cont. 16 16 - - 50vin 1s trans. 50vin 1s trans. * * absolute max vin = 60v absolute max vin = 60v 1 5a total 20a total 20a total 20a total 20a t otal 20a total 20a total 5v (05d) 6.5a total 8a total mqfl m qfl - - 270e 2 70e 1 30 1 30 - - 4 75vin cont. 4 75vin cont. 130 130 - - 520vin 0.1s trans. 520vin 0.1s trans. * * a bsolute max vin = 600v absolute max vin = 600v 15v (15d) 12v (12d) 6a total 10a total 8a total 8a t otal 10a total 10a total 5a total 8a total 6.5a total 6.5a t otal 8a total 8a total m qfl mqfl - - 2 70l 270l 65 65 - - 3 50vin cont. 350vin cont. 65 65 - - 4 75vin 0.1s trans. 475 vin 0.1s trans. * * absolute max vin = 550v a bsolute max vin = 550v mq fl m qfl - - 270 2 70 1 55 1 55 - - 4 00vin cont. 4 00vin cont. 155 155 - - 475 vin 0.1s trans. 47 5vin 0.1s trans. * * a bsolute max vin = 550v absolute max vin = 550v mqfl mq fl - - 28ve 28ve 16 16 - - 70vin cont. 7 0vin cont. 5.5 5.5 - - 80vin 1s trans. 80vin 1s trans. * * absolute max vin = 100v absolute max vin = 100v mqfl mqfl - - 28v 28v 16 16 - - 40vin cont. 40vin cont. 5.5 5.5 - - 50vin 1s trans. 50vin 1s trans. * * a bsolute max vin = 60v absolute max vin = 60v mqfl mqfl - - 28e 28e 16 16 - - 70vin cont. 70vin cont. 16 16 - - 80vin 1s trans. 80vin 1s trans. * * absolute max vin =100v absolute max vin =100v mqfl mqfl - - 28 28 16 16 - - 40vin cont. 40vin cont. 16 16 - - 50vin 1s trans. 50vin 1s trans. * * absolute max vin = 60v absolute max vin = 60v 15a/ 0 .8a 15a/ 0.8a 15 a/ 0.8a 15a/ 0.8a 15a/ 0 .8a 15a/ 0.8a 15a/ 0.8a 5v/ 15v (0515t) 2.5a/ 0.8a 15a/ 1a 22a/ 0.8a 22a/ 1a mqfl m qfl - - 270e 2 70e 1 30 1 30 - - 4 75vin cont. 4 75vin cont. 130 130 - - 520vin 0.1s trans. 520vin 0.1s trans. * * a bsolute max vin = 600v absolute max vin = 600v 15a/ 1a 15 a/ 1a 15a/ 1a 15a/ 1a 15a/ 1a 15a/ 1a 5v/ 12v (0512t) 30v/ 15v (3015t) 3.3v/ 15v (3r315t) 3.3v/ 12v (3r312t) 22a/ 1a 22 a/ 1a 22a/ 1a 22a/ 1a 22a/ 1a 22a/ 1a 22a/ 0 .8a 22 a/ 0.8a 22a/ 0.8a 22a/ 0 .8a 22a/ 0.8a 22a/ 0.8a 2.5a/ 0 .8a m qfl mqfl - - 2 70l 270l 65 65 - - 3 50vin cont. 350vin cont. 65 65 - - 4 75vin 0.1s trans. 475 vin 0.1s trans. * * absolute max vin = 550v a bsolute max vin = 550v 2. 5a/ 0.8a mq fl m qfl - - 270 2 70 1 55 1 55 - - 4 00vin cont. 4 00vin cont. 155 155 - - 475 vin 0.1s trans. 47 5vin 0.1s trans. * * a bsolute max vin = 550v absolute max vin = 550v 2.5a/ 0.8a mqfl mq fl - - 28ve 28ve 16 16 - - 70vin cont. 7 0vin cont. 5.5 5.5 - - 80vin 1s trans. 80vin 1s trans. * * absolute max vin = 100v absolute max vin = 100v 2.5a/ 0 .8a mqfl mqfl - - 28v 28v 16 16 - - 40vin cont. 40vin cont. 5.5 5.5 - - 50vin 1s trans. 50vin 1s trans. * * a bsolute max vin = 60v absolute max vin = 60v 2.5a/ 0.8a mqfl mqfl - - 28e 28e 16 16 - - 70vin cont. 70vin cont. 16 16 - - 80vin 1s trans. 80vin 1s trans. * * absolute max vin =100v absolute max vin =100v 2.5a/ 0.8a mqfl mqfl - - 28 28 16 16 - - 40vin cont. 40vin cont. 16 16 - - 50vin 1s trans. 50vin 1s trans. * * absolute max vin = 60v absolute max vin = 60v 15a/ 0 .8a 15a/ 0.8a 15 a/ 0.8a 15a/ 0.8a 15a/ 0 .8a 15a/ 0.8a 15a/ 0.8a 5v/ 15v (0515t) 2.5a/ 0.8a 15a/ 1a 22a/ 0.8a 22a/ 1a mqfl m qfl - - 270e 2 70e 1 30 1 30 - - 4 75vin cont. 4 75vin cont. 130 130 - - 520vin 0.1s trans. 520vin 0.1s trans. * * a bsolute max vin = 600v absolute max vin = 600v 15a/ 1a 15 a/ 1a 15a/ 1a 15a/ 1a 15a/ 1a 15a/ 1a 5v/ 12v (0512t) 30v/ 15v (3015t) 3.3v/ 15v (3r315t) 3.3v/ 12v (3r312t) 22a/ 1a 22 a/ 1a 22a/ 1a 22a/ 1a 22a/ 1a 22a/ 1a 22a/ 0 .8a 22 a/ 0.8a 22a/ 0.8a 22a/ 0 .8a 22a/ 0.8a 22a/ 0.8a 2.5a/ 0 .8a m qfl mqfl - - 2 70l 270l 65 65 - - 3 50vin cont. 350vin cont. 65 65 - - 4 75vin 0.1s trans. 475 vin 0.1s trans. * * absolute max vin = 550v a bsolute max vin = 550v 2. 5a/ 0.8a mq fl m qfl - - 270 2 70 1 55 1 55 - - 4 00vin cont. 4 00vin cont. 155 155 - - 475 vin 0.1s trans. 47 5vin 0.1s trans. * * a bsolute max vin = 550v absolute max vin = 550v 2.5a/ 0.8a mqfl mq fl - - 28ve 28ve 16 16 - - 70vin cont. 7 0vin cont. 5.5 5.5 - - 80vin 1s trans. 80vin 1s trans. * * absolute max vin = 100v absolute max vin = 100v 2.5a/ 0 .8a mqfl mqfl - - 28v 28v 16 16 - - 40vin cont. 40vin cont. 5.5 5.5 - - 50vin 1s trans. 50vin 1s trans. * * a bsolute max vin = 60v absolute max vin = 60v 2.5a/ 0.8a mqfl mqfl - - 28e 28e 16 16 - - 70vin cont. 70vin cont. 16 16 - - 80vin 1s trans. 80vin 1s trans. * * absolute max vin =100v absolute max vin =100v 2.5a/ 0.8a mqfl mqfl - - 28 28 16 16 - - 40vin cont. 40vin cont. 16 16 - - 50vin 1s trans. 50vin 1s trans. * * absolute max vin = 60v absolute max vin = 60v (75w max total output power) ?80% of total output current available on any one output. *converters may be operated continuously at the highest transient input voltage, but some component electrical and thermal stresses would be beyond mil-hdbk-1547a guidelines.
pr oduct # mqfl-28-06s phone 1-888-567-9596 www .synqor .com doc.# 005-2mq060s rev. b 11/29/07 page 16 output: output: current: current: 6.0 v 6.0 v 20 a 20 a mqfl-28-06s mqfl-28-06s t t t t e e e e c c c c h h h h n n n n i i i i c c c c a a a a l l l l s s s s p p p p e e e e c c c c i i i i f f f f i i i i c c c c a a a a t t t t i i i i o o o o n n n n part numbering system the part numbering system for synqors milqor dc/dc converters follows the format shown in the table below. example: mqfl C 28ve C 06s C y C es application notes a variety of application notes and technical white papers can be downloaded in pdf format from the synqor website . patents (additional patent applications may be filed) synqor holds the following patents, one or more of which might apply to this product: 5,999,417 6,222,742 6,545,890 6,577,109 6,594,159 6,731,520 6,894,468 6,896,526 6,927,987 7,050,309 7,072,190 7,085,146 w arranty synqor offers a two (2) year limited warranty. complete warranty information is listed on our website or is available upon request from synqor. information furnished by synqor is believed to be accurate and reliable. however, no responsibility is assumed by synqor for its use, nor for any infringements of patents or other rights of third parties which may result from its use. no license is granted by implication or otherwise under any patent or patent rights of synqor. contact synqor for further information: phone : 978-849-0600 t oll free : 888-567-9596 fax : 978-849-0602 e-mail : power@synqor .com w eb : www .synqor .com address : 155 swanson road boxborough, ma 01719 usa t riple output d ual output s ingle output output voltage(s) 1r5s 1 r8s 2r5s 3r3s 0 5s 06s 7r5s 09s 12s 15s 28s 05d 12d 1 5d x y w z package outline/ pin configuration b c es hb screening grade 3r312t 3r315t 0512t 0 515t 3015t 28 28e 2 8v 28ve 2 70 270e 270l mqfl input voltage range model name t riple output d ual output s ingle output output voltage(s) 1r5s 1 r8s 2r5s 3r3s 0 5s 06s 7r5s 09s 12s 15s 28s 05d 12d 1 5d x y w z package outline/ pin configuration b c es hb screening grade 3r312t 3r315t 0512t 0 515t 3015t 28 28e 2 8v 28ve 2 70 270e 270l mqfl input voltage range model name


▲Up To Search▲   

 
Price & Availability of MQFL-28-06S-Y-HB

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X